Способ извлечения золота из воды. Металлы из морской воды Как получить золото из речного ила

С годами процесс добычи ценного металла постоянно менялся, раньше все делали вручную, сейчас этот процесс механизирован. Места, где можно добывать металл, разнообразны. Но не все знают, что золото в воде также можно найти.

В какой воде можно найти золото?

Драгоценный металл можно найти в канализационной, водопроводной, морской воде и в других ее видах. Содержание золото в воде небольшое. Больше всего минералов в океанических водах.

Золото в воде

Дно рек состоит из осадочных отложений, которые лежат на коренной породе, так называемом плотике. На плотике есть отложения, которые смываются потоками воды. А также потоки могут смывать золото с гор. А поскольку оно тяжелое, то оседает на дно, где задерживается камнями, песком, глиной и другими осадочными отложениями.

Наибольшее количество золота образуется в глубоких водоемах или в местах, где скорость потока замедляется, а также в местах, где есть большие камни и валуны. Золото можно найти в местах, где потоки реки выходят на равнину. Металл откладывается и там, где река расширяется и поток водоема замедляется. Раньше вдоль реки можно было найти самородки, которые выбрасывало потоком воды после размытия золотоносных жил.

В морской воде драгоценный металл обнаружили в начале XIX века. Но его добыча из воды не распространилась. Золотые частицы находятся на осадках пород, содержатся в пляжевых россыпях. Минералы попадают в воду при разрушении пород, берегов, образуя россыпи. Они оседают на глубину от пяти до пятидесяти метров на протяжении сотен километров.

Точного количества золота в морской воде никто не знает. Рассчитывают, что это примерно от четырех до десяти мг на тонну.

В канализационную и водосточную воду золото попадает с промышленных объектов, с заводов электроники, стоматологии, ювелирных мастерских. Американские ученые после исследований установили, что канализация содержит больше золотого металла, чем водоемы. Из этих вод металл никто не извлекает, так как нерентабельно. Но ученые ищут способ очищать стоковые воды и извлекать оттуда драгоценный металл. Вполне возможно, что в скором времени такие способы найдут, и с их помощью можно будет пить экологически чистую воду и обогатить страны добытыми из стоков ценными металлами.

В Японии из канализации города Сува удалось получить по 2 кг золота с каждой тоны золы. Зола образовалась на фильтрах канализации и задерживала, накапливала золотые минералы, выброшенные с промышленных производств.

Исследования и добыча золота из водоемов

Было много споров у исследователей по поводу того, как получить золото из воды. На разработки ушло много сил и средств. Изначально пробовали способ получения при помощи пирита. Для этого во время плавания с кораблей буксировали мешки, наполненные рудой, считали, что она притягивает драгоценный металл. И действительно после возвращения из плавания в руде было повышенное содержание золотых частиц.

Позже исследователь Генри Балл предложил добывать золотые минералы с помощью негашеной извести. Поток воды попадал в бассейн, смешивался с известняком, потом ее фильтровали, обрабатывали и сливали обратно в водоем. Осадок обрабатывали цианированием. Для того чтобы построить такой бассейн, нужно выбрать расположение вблизи течений, где будут приливы и отливы и подальше от населения.

Инженер Русских из Кирова предложил свой способ получения драгоценного металла из морской воды: вместо извести помещать золу тепловых электростанций. Этот способ оказался менее затратен.

Немецкий химик Хаббер после долгих исследований пришел к выводу, что золото получать из воды невыгодно. Ученые предлагали использовать для добычи сульфиды (считали, что золотые частицы прилипнут к ним), ртуть.

На данный момент золото из морской воды получить сложно и недешево, процесс не окупается. Ученые продолжают исследования.

Для из реки используют различные устройства:

  • Мини-драги. Это устройство всасывает как пылесос со дна реки породу, при этом отделяя металл от нее. Состоит из двигателя, плавучей системы, инжектора, насоса, промывочного желоба. Мини-драга имеет систему подачи воздуха, которая обеспечивает дыхание под водой. Небольшие мини-драги имеют вес 24 килограмма, а крупные - 90. Применяются только для водоемов с небольшой глубиной.
  • Металлоискатель. Этот прибор позволяет искать места скопления золота.
  • Лоток. Эта вещь всегда была востребованной и полезной, применяют поисковики. Его устанавливают в реке, очищают от гали, золотые частицы садятся на дно, потом их смывают в чашу. С помощью лотка можно взять золото на пробу, если вы найдете небольшие частицы, можно приступать к поискам.
  • Пробник золота. Устройство позволяет почувствовать наличие золотых частиц. Прибор имеет на одном конце сенсорное устройство, на втором ручку с блоком управления. Он втыкается в грунт, о том, что золото есть, оповещает звуковой сигнал, при этом загорается лампочка.
  • Драга. Плавучее устройство, которое использую для того, чтобы извлекать золото. Оно засасывает породу и перекачивает ее на фабрику. Однако драга портит реку, уничтожает русло и берега. Сейчас их модернизируют и совершенствуют.

В России закон запрещает из водоемов.

Золото в воде есть. Из реки и неглубоких водоемов его научились добывать. Для того чтобы получить ценный металл из морской воды, нужно разработать способы, которые были бы рентабельны. То же происходит и со стоковой водой. Исследователи ищут методы, которые позволят очищать воду, фильтровать ее и извлекать оттуда золото. Так как судя по исследованиям золота там достаточно.

Вы можете ознакомиться с изобретениями Николая Егина
Данный сайт остается как память об изобретателе

Установка для добычи золота из воды - «Лента-СДМ»

Способы и устройства для извлечения редкоземельных и драгоценных металлов из воды и различных стоков были опубликованы в журнале (см. журн. «ИР» № 5 2004 г. «Золотые хвосты», «ИР» № 3 2009 г. «Пора море морщить», «ИР» № 5 2011 г. «За драгметаллами с живой водой»). Все предложенные устройства работают на принципе электролизной регенерации ионных фильтров, поэтому носят названия «РИФ-12», «РИФ-24», «РИФ-50».

Исходным сырьем для этих устройств служат мельчайшие частицы, растворенных в жидкости металлов - ионы с размерами молекулярного уровня. Поймать их промывочными лотками, драгами и другими механизмами невозможно, как золотой песок и самородки, поэтому электролизные «РИФы» успешно заняли свою микроэлементную нишу. Для улова средних и крупных частиц драгметаллов техника давно разработана, постоянно усовершенствуется, вот только беда в том, что месторождения вырабатываются, а новых нет. Вместе с тем, существует достаточно распространенная промежуточная форма состояния драгметаллов, например, золота в виде мелких чешуек, размеры которых составляют сотые доли от величины песчинок. Это так называемые мелкодисперсное золото появляется во многих ручьях и речках Сибири и др. регионах при таянии снегов в из верховьях. Стремительные потоки талой воды вымывают из рыхлых горных пород эти драгоценные блестки и несут их в придонных слоях. В чистой воде на мелководье они хорошо видны, но поймать их «РИФами», лотками и драгами невозможно. Для первых они слишком крупные, для вторых — мелкие, поэтому промежуточная ниша добычи мелкодисперсных драгметаллов оказалась пустой.

Николай Егин изобрел и разработал новую технологию - установку для извлечения мелкодисперсного золота в промышленных объемах. Эксперименты показали, что наиболее эффективно на тонкие чешуйки металла оказывают влияние электростатические заряды чешуйки подобно тонкой фольги в конденсаторах собирают на себе заряды и сохраняют их в диэлектрической среде. Поскольку талая вода в ручьях и речках чистая и имеет низкую электропроводность, мы решили воспользоваться этим. Схема устройства для добычи золота из воды изображена на рисунке 1.

Рис. 1. Установка для добычи драгоценных металлов - золота из воды «Лента-СДМ»

В дно реки забили шпильки 1 с пластиковыми роликами 1, через которые пропустили бесконечную ленту 3. Основание ленты изготовили из прорезиненного брезента в котором завулканизировали нити из полимера с упругим ворсом из токопроводящих углеродных волокнистых структур (УВС) с внешней стороны 4. Лента 3 копировала уклон дна реки или ручья с одной стороны и проходила через коробку рекомбинатора 5 зарядов в расположенную у берега. На расстоянии около 1 метра вверх по течению установили вторую неподвижную ленту 6 параллельно первой подвижной ленте 3, привод которой выполнял электродвигатель 7 с редуктором, установленные в коробке рекомбинатора 5 зарядов. Последняя имела заземление и съемную кассету 8 с моющим раствором. Источником тока (блок питания) 9 служил автомобильный аккумулятор, водяной или ветрогенератор на + 24 В с умножителем напряжения 10.

В придонных слоях чешуйки мелкодисперсного золота в турбулентных потоках воды касались волокон из УВС на неподвижной ленте 6 и заряжались до напряжения 200 250 В. Затем проходили 1 метр в воде не успев потерять свой положительный заряд и падали на внешнюю поверхность подвижной ленты 3. Расстояние в 1 метр между лентами 6 и 3 было выбрано опытным путем, так чтобы ленты не разряжались между собой при меньшем зазоре и не терялись заряды на чешуйках золота при большом расстоянии. Поскольку полимерные нити с УВС на поверхности ленты 3 были заряжены от умножителя напряжения 10 отрицательно, то положительно заряженные чешуйки золота под действием сил электростатики (закон Кулона) притягивались, внедрялись в нити и удерживались в них. Диаметр, длина и упругость этих нитей были были выбраны так, что более крупные частицы песка и гальки прокатывались через них не застревая, т.к. Имели большую кинетическую силу и давление воды. Не могло их удержать и достаточно слабое электрическое поле. На мелкие чешуйки золота оптимально подобранное электрическое поле и упругость волокон оказывали доминирующее значение и надежно удерживали их. Электродвигатель 7 с редуктором перемещал ленту 3 со скоростью не более 0,1 м/сек, так, что все золото, собранное на ленте 3 поступало в коробку рекомбинатора 5 зарядов. С помощью роликов лента 3 меняла направление движения на 180 º и поступала в съемную кассету 8 с моющим раствором, который имел высокую электропроводность и гидрофобность. Заземление коробки 5 и кассеты 8 совместно с указанным расположением в них ленты 3 и свойствами моющего раствора полностью снимали статическое электричество с чешуек золота и полимерных нитей с УВС на ленте 3. Кроме того, гидрофобность раствора резко снижала силы поверхностного натяжения между частичками золота и деталями устройства, что полностью устраняло налипание мелких чешуек золота на них. Очищенная лента 3 продвигалась снова в зону улавливания мелкодисперсного золота, а концентрат из кассеты 8 отбирался на переработку.

Устройство «Лента-СДМ» (сбор драгоценных металлов) содержит небольшое количество деталей, простое в изготовлении и эксплуатации, поэтому легко может освоено малыми предприятиями. При достаточно большой концентрации мелкодисперсного золота в воде устройство собирает до 350 400 грамм в сутки при расходе электроэнергии не более 0,1 кВт/час. При малых концентрациях движение ленты 3 целесообразно сделать в импульсном режиме, для этого электродвигатель 7 с редуктором включают к блоку питания 9 через реле времени 11. Промежуток времени между включениями движения ленты 3 выбирают таким, чтобы на поверхности ленты собралось достаточно много мелкодисперсного золота. Путь движения ленты при этом должен быть не меньше длины ленты, находящейся в кассете 8 рекомбинатора 5 зарядов. Все это дополнительно повышает степень очистки ленты от мелкодисперсного золота и снижает расход электроэнергии не менее, чем на порядок.

«Лента-СДМ» может быть использована не только на ручьях и реках Сибири для сбора золота, но и в других регионах России и за рубежом. Мелкодисперсное состояние металлов и минералов достаточно распространено в рыхлых горных породах по всему миру. Более того, при правильном подборе электростатических и механических параметров конструкции «Лента-СДМ» способна выполнять промышленную добычу целого ряда редкоземельных и цветных металлов из морской воды, имеющей высокую электропроводность. Устройствами, аналогичными «Ленте-СДМ» отдельные фирмы успешно добывают уран из морской воды. Можно применить новую технологию и для различных производственных целей в химической, медицинской, пищевой, нефте — газовой и др. отраслях хозяйства. Способ и устройство патентуется, имеется ряд «НОУ-ХАУ».

Все представленные на сайте изобретения имеют авторские свидетельства на изобретение, чертежи и конструкторскую документацию. Автор – Николай Егин.

Специалисты химического факультета МГУ утверждают, что в последние десятилетия объемы добычи и переработки полезных ископаемых стали практически сопоставимы с их запасами в земной коре. Особенно пессимистичны прогнозы в отношении металлов, таких, как серебро, олово, кобальт, уран, ртуть. Их запасы могут истощиться уже в ближайшие полвека. Одним из наиболее приемлемых вариантов решения проблемы сырьевого дефицита уже сегодня могла бы стать разработка ресурсов Мирового океана. По мнению доктора химических наук, профессора Георгия Лисичкина, "современная наука знает, как получить целый спектр металлов из морской воды с помощью традиционных химических способов".

Дары моря

Мировой океан занимает почти 71 процент поверхности нашей планеты. На этой громадной территории имеются все известные на земле минералы - либо растворенные в воде, либо покоящиеся на дне в виде отложений. Ученые подсчитали, что каждый литр морской воды содержит 35 граммов минеральных веществ. "При этом ресурсы океана постоянно возрастают за счет того, что реки и атмосферные осадки несут в моря огромное количество обломочного материала, - рассказывает Георгий Лисичкин. - В результате только эрозии земной поверхности в океан ежегодно попадает 3,3 миллиарда тонн твердого вещества. Еще около четырех миллионов тонн в год составляют осадки космогенного происхождения. Достоверно подсчитано, что ежегодное прибавление минералов в морской воде превышает объем добычи ресурсов на земной поверхности, и их использование поможет покрыть любые разумные потребности человечества в ресурсах на сотни лет вперед".

К тому же несомненным преимуществом эксплуатации Мирового океана является постоянство состава морской воды, которое позволяет применять одну и ту же технологию добычи ресурсов в различных районах планеты. Большим плюсом является и доступность морских "месторождений". Благодаря огромной протяженности береговой линии отпадает необходимость в дорогостоящих и трудоемких поисковых и геологоразведочных работах. Наконец, морское сырье уже подготовлено для гидрометаллургической переработки - не требуется сложная и экологически опасная операция вскрытия руды.

Ученые давно ищут способы, как воспользоваться таким богатством, и кое-что уже удалось осуществить. Например, во времена СССР военно-промышленный комплекс финансировал научные разработки по добыче из морской воды урана. Сегодня это уже хорошо отлаженная технология. Только если в годы холодной войны большая часть урана (не обязательно добытого из морской воды) шла на производство ядерного оружия, то сегодня его добыча актуальна для обеспечения работы атомных электростанций.

Благодаря научным разработкам Мировой океан сегодня щедро обеспечивает человечество магнием. В общей сложности из морской воды добывают около 200 тысяч тонн этого металла в год - почти половину мировой добычи.

Не будет преувеличением сказать, что ученые разных стран готовы именно сейчас начать наступление на богатства Мирового океана. Например, российские химики и геологи уверены, что помимо урана и магния вполне реально в ближайшем будущем добывать из морской воды медь, хром, ванадий, молибден, кобальт, серебро и даже золото. В России одновременно специалисты нескольких исследовательских учреждений - МГУ, Института геохимии и аналитической химии им. В. И. Вернадского РАН, Кольского научного центра РАН - изучают такую возможность. И некоторые из разработанных ими проектов представляются весьма перспективными.

Например, в Институте геохимии и аналитической химии создана автоматизированная демонстрационная установка по комплексной безотходной переработке морской воды. Основные стадии технологии прошли пилотные испытания на установках, смонтированных в Охотском и Японском морях, на Сахалинской ГРЭС и одной из ТЭЦ Владивостока. Результатом испытаний стало экспериментальное подтверждение возможности добычи из морской воды чистых солей магния, калия, натрия, брома, лития и ценных микрокомпонентов. Суть метода в переработке морской воды дешевыми безреагентными сорбентами - веществами, способными "вытягивать" полезные минералы.

В принципе в этом направлении сегодня работают ученые многих стран, особенно тех, которые не могут похвастаться богатством своих недр. Например, в Японии реализуется следующий проект. В акватории Японского моря в форме труб заложены "капсулы", заряженные гранулами сорбента, успешно вытягивающие металлы. Схожая технология с успехом применяется и у нас - на опытной Кольской приливной электростанции.

К настоящему времени разработано несколько десятков проектов заводов по переработке морской воды. Некоторые из них поражают воображение масштабностью и оригинальностью. Шведские ученые, например, предложили проект подводного комплекса в шельфовой зоне, основу которого составляет построенная на глубине 200 метров подводная плотина, перегораживающая океанское течение. В Италии выдвигался проект подводных установок с рабочими элементами в виде сетей, изготовленных из полимеров, поглощающих микроэлементы. Если такие сети установить в проливах с достаточно интенсивным течением, то, по мнению авторов проекта, проблема извлечения металлов принципиально была бы решена.

Понятно, что интерес к теме высок. Однако сегодня необходима объективная оценка актуальности подобных проектов.

Золото чистой воды

В начале ХХ века лауреат Нобелевской премии немец Фриц Габер, получивший награду за синтез аммиака, предпринимал попытку добыть из морской воды золото. Когда Германия проиграла Первую мировую войну, на нее были наложены репарации. Ученый, получив одобрение правительства, организовал экспедицию, чтобы покрыть долги золотом, извлеченным из океанской воды. Миссия потерпела фиаско. В 20-е годы прошлого столетия ученые ошибочно предполагали, что концентрация золота в морской воде в десять раз больше, чем есть на самом деле. Именно от этой цифры отталкивался Габер, когда начинал свои исследования. В итоге он получил несколько граммов металла за несколько месяцев дорогостоящих работ. Тогда был сделан вывод, что гораздо выгоднее добывать золото из отработанных на приисках пород.

Современные исследования показывают, что концентрация золота в донных осадках океанов (Атлантический, Северный Ледовитый) местами превышает так называемую минимально промышленную (для континентальных россыпей), и они, следовательно, представляют в перспективе интерес. А по подсчетам, сделанным специалистами из МГУ, если полностью извлечь содержащееся в морской воде золото, то на каждого жителя нашей планеты придется по 1,2 килограмма "презренного металла"!

Так может ли океан так же хорошо поставлять человечеству наряду с другими металлами и золото? "В 90-х годах на нескольких научно-исследовательских судах проводился специальный отбор проб в акватории северо-западного шельфа Черного моря, обеспечивавший полное улавливание золотых частиц, включая пылевидные, - рассказывает Владислав Резник, доктор геологических наук, сотрудник геолого-географического факультета Одесского национального университета. - Золото было обнаружено в большинстве проб, а на участке палеолимана реки Днепр в среднем на тонну воды приходилось около 0,436 грамма. Таким образом, можно говорить о существовании азово-черноморской золоторассыпной провинции, охватывающей шельф и прилегающую сушу. Размеры зерен извлекаемого там золота достигают 0,5 мм, а форма разнообразна. Среди них, по-видимому, есть как частички, вынесенные реками, так и самородные золотинки". Сегодня российские и украинские ученые были бы не прочь реанимировать подобные исследования, однако их сдерживает крайне скудная экспедиционная база.

Впрочем, дело может быть не только в финансах. Георгий Лисичкин, к примеру, полагает, что, несмотря на всю свою привлекательность, добыча золота из морской воды сегодня не стоит у исследователей на первом плане. Гораздо интереснее, по его мнению, было бы обратить взор на загадочные железомарганцевые поля в Мировом океане, запасы которых оцениваются сотнями миллиардов тонн. Трудностей на пути разработки этих полей немало. В первую очередь - большая глубина залегания. Предстоит изыскать новые инженерные решения, так как современная технология подъема сырья на поверхность океана с помощью лебедок и драг очень трудоемка и непроизводительна.

Российские исследовательские суда в ближайшее время могут отправиться в Атлантику на изучение железомарганцевых полей, а ряд отечественных НИИ приступает к разработке проектов надводных добывающих комплексов, а также подводных робототехнических систем, которые могли бы без участия человека производить поиск, добычу и транспортировку металла на плавучие базы.

Человечество пока делает лишь первые шаги в освоении океана и его ресурсов. Размышляя о промышленном вторжении в Мировой океан, ученые напоминают, что все океанические процессы, начиная от молекулярного уровня и кончая планетарными, такими, как течения и циклоны, связаны единой иерархической системой. В соответствии с законами экологии любое вмешательство в природную систему на низшем молекулярном уровне может обернуться экологической катастрофой. Увы, полностью исключить возможность негативных последствий ученые не могут.

Н. В. Перцов, 3. P . Ульберг, Л. Г. Иарочко, П. И. Гвоэдяк, С 3 1 ю4М lЯ

«Ж туманского (7l) Заявнтель

Институт коллоидной химии и химии воды (5Й) СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ ВОДЫ

Изобретение относится к коллоидной химии и может быть использова" но для очистки водных дисперсий и сточных вод от взвешенных веществ, в т.ч. высокодисперсного золота, в золотодобывающей и ювелирной промышленностях и на других предприятиях цветной металлургии.

Известен способ извлечения золота из породы при помощи бактерий, который состоит в том, что они переводят золото в раствор, иэ которого оно удаляется ионообменным способом О).

Однако микроорганизмы извлекают золото, находящееся в частице породы, одновременно культивируясь на ее поверхности, при отсутствии последней использование их для извлечения, например коллоидного золота из раствора, не приводит к эффекту, Следствием этого является невозможность использования способа для очень раэбавленных растворов. Способ также очень специфичен, сложен и продолжителен.

Известен также способ очистки сточных и промывных вод, состоящий в фильтрации их через ионообменные коS лонки, в основе которого лежит процесс фиксации ионов металла или соединений металлов в ионной форме, ча-.. ще всего динка, меди или боле дорогих, например золота, частицами ионита (2).

Однако при этом не удерживаются высокодисперсные частицы металлов, и в т.ч. золота, дисперсность которого 200-300А. При пропускании через ионообменник раствора, содержащего золото в ионном состоянии с концентрацией 0,03 r/ë (в виде дицианурата) и коллоидного золота 0,03 г/л в растворе остается золото в ионном состоянии менее 0,001 г/л, в то время как содержание коллоидного золота изме.няется гишь на 10-12Ф. В промывных

3 и сточных водах ювелирных фабрик и других производств остается до

15 мг/л коллоидного золота, которое не может быть удалено существующими способами. Технология ионного обмена предусматривает необходимость проведения стадии регенерации, сопряженной с расходованием значительного количества солей, кислот и щелочей, а также готового продукта - чистой воды. Процент извлечения коллоидного золота составляет 10- 143, а ионного—

Целью изобретения является повышение степени извлечения золота из воды.

Поставленная цель достигается тем, что в воду, содержащую золото в коллоидном состоянии, вводят дрожжи, родов Saccharomyces, или Candida, . или Rodotoru1а, или бактерии Escher i chi a смесь выдерживают предпочтительно 5-45 мин, отделяют дисперсную фазу и извлекают золото. Предпочтительно вводить микроорганизмы в количестве 106-10 кл/мл на 1 мг/мл золота.

Способ осуществляют следующим оЬразом: 30

Используют культуры хорошо известных и применяемых в технологии микроор ra ни змов — дрожжи Sa ccha romyces или Candida, или Rodotorula, или

Escherichia со 11.

Культуры дрожжей выращивают в течение суток на сусло-агаре, а бактерий - на мясо-пептонном агаре, смывают физиологическим раствором (10 4моль/л NaC

Ь» 8 на нефелометре ФЗК-56 кювета 3,055, и светофильтр 6 вводят в водный раствор золота с концентрацией 0,030,24 мг/мл, выдерживают в течение

5-45 мин, затем отделяют дисперсную фазу путем центрифугирования или электроудерживания и извлекают золото, например, сжигая полученную массу. Содержание золота определяют на. Уф-спектрофотометре с помощью калибровочной кривой.

Оптимальное время разное для разных видов микроорганизмов, например для Saccharomyces vini u Candida ,util!s 15 мин, Rodotorulà glutinis—

30 мин, а для бактерий Escherichia

coli - 45 мин, кроме того, способность микроорганизмов к агрегированию с золотом зависит от возраста культуры ° Например для 4-х суточной культуры необходимое время контакта увеличивается по сравнению с 2-х суточной.

Пример 1. К 50 мл сточной воды ювелирной фабрики, содержащей коллоидное золото с концентрацией

0,03 мг/мл добавляют 50.мл суспензии культуры Saccharomyces vini c концентрацией 3 ° 1 0 кл/мл. Время контакта 30 мин. Полученную массу центрифугируют в течение 5 мин при

5000 об/мин, отделяя воду. Содержание золота в последней составляет

0,001 мг/мл. При этом извлекают

1,40 кг золота.

Пример 2. К 50 мл водной дисперсии, содержащей 0,24 мг/мл кол" лоидного золота, добавляют 50.мл суспензии культуры Saccharomyces vlni с концентрацией 3.108кл/мл. Время контакта составляет 45 мин. Суспензию пропускают через ячейку электроудерживания, которая состоит из центральной рабочей камеры и двух электродных камер, отделенных от рабочей целлофановыми мембранами.

Центральную камеру ячейки заполняют гранулированным силикагелем. В рабочей камере создают электрическое поле напряженностью 50 В/см при скорости потока 1,5 мл/мин. По данным

УФ-спектрофотометра происходит полное извлечение (удерживание на силикагеле) дисперсного золота. В таблице представлены сравнительные данные по степени извлечения золота из воды предложенным и известным способами.

Способ позволяет извлекать из водных растворов и сточных вод высокодисперсное золотс практически полностью (на 98-993).

Использование предложенного способа только на одной ювелирной фибрике позволит получить ожидаемый экономический эффект 50-60 тыс. руб. в год, 948897

S C5 а с5 б- о

I5 х бх о х

С1 о к о о.

СР CD CD о о о

° ° м м м а с и

U о с () х с со с

LA сч о о о о о

° ° о о а о

СЛ CA о о о о бб\ СС\ о о о о о ю

О О м м о о

Составитель Г. Лебедева

Редактор М. Товтин Техред М.Надь Корректор Г. Решетник

Заказ 5688/1

Тираж 981 Под пи сное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, N-35, Раушская наб., д. 4/5 филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

Формула изобретения вводят в воду в количестве 10 1О кл/мл на 1 мг/мл золота.

1. Способ извлечения золота из во- 3. Способ по пп. 1 и 2, о т л иды, отличающийся тем, что, ч а ю шийся тем, что воду с с целью повышения степени извлече- микроорганизмами выдерживают в течения, в воду предварительно вводят - we 5-45 мин. дрожжи родов Saccharomyces, или Сап- Источники информации, dida, или Rodotorula, или бактерии принятые во внимание при экспертизе

.. 70 71 72 73 74 75

Глава XV ИЗВЛЕЧЕНИЕ ЗОЛОТА ИЗ МОРСКОЙ ВОДЫ

Уже давно известно, что мировой океан содержит миллиарды тонн полезных ископаемых и ценных металлов, таких, как золото, уран, медь и др. .

Хотя в общем во всей гидросфере планеты среднее содержание золота составляет не более 1-10-в%, в океанах (минерализованной части гидросферы) среднее содержание золота достигает 5 мг/м3-При этом установлено, что концентрации золота в морской воде не везде одинаковы, и в промышленно извлекаемом количестве золото находится в соленых водах только на весьма ограниченных участках и чаще в прибрежных водах.

После установления этого факта, начиная с 1901 г. по настоящее время тщательно изучаются генезис и топография распространения золота в морской воде. Так, еще в 1901 г. Вагнер, применяя сложный метод анализа, определил в некоторых прибрежных водах США содержание золота 16 мг/т и серебра 1900 мг/tn . При этом отметил обогащение золотом некоторых живых организмов и растений, обитающих в морях, а также их остатков. В частности, в тонне морских водорослей и плавающих органических остатков было обнаружено около 200-300 мг золота, а в шести пробах морских донных отложений, взятых с глубины 89-1986 м, Вагнер определил содержание золота в среднем 110 мг/т и серебра 1070 мг/т.

Хабер и Аррениус в 1923 г. установили весьма низкое содержание золота в водах Атлантического океана у берегов Северной Европы. В это же время Юсада зафиксировал в прибрежных водах Тихого океана у Японии содержание золота 3-20 мг/т-

Одновременно было установлено повышенное содержание золота в континентальных высокоминерализованных горячих источниках. Так, по свидетельству Лейда, содержание золота в горячем источнике штата Арканзас (США) составило 260 мг/т. Паркер же приводит величины содержания золота в воде Большого Соленого озера на Утаке ~360 мг/т, а в воде из озера Моно в Калифорнии - до 540 мг/т.

Используя данные большого числа ученых и исследователей, анализировавших морские воды различных районов земного шара в период с 1872 по 1964 гг., металлург-исследователь Панниер

составил сводную таблицу содержания золота в морской воде (табл. 24).

В настоящее время установлено, что золото в морской воде находится как в растворенном виде в галоидной (в основном, йодной) форме, так и в виде восстановленного, весьма тонкодисперсного (коллоидного) металла. При этом и ионизированное, и свободное металлическое золото, большей частью, адсорбировано на взвешенных минеральных частицах. Одновременно отмечена интересная особенность: повышенной концентрации золота в морской воде сопутствует и повышенная естественная радиоактивность. Это наиболее четко отмечено у побережья Нового Уэльса в Австралии, где с ростом радиоактивности содержание золота в морской воде поднимается до 250-300 мг/т.

После установления формы нахождения золота в морской воде и топографии его распространения в мировом океане, появилось много предложений о способах извлечения золота из морской воды. Большая часть информации в этой области исходила от отдельных лиц, и многие патенты, заявленные на основе этих исследований, весьма схожи между собой. Ниже кратко описаны перечисленные способы извлечения золота из морской воды.

Loading...Loading...